RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2001 Volume 192, Number 11, Pages 35–54 (Mi sm608)

This article is cited in 2 papers

Local description of closed submodules of a special module of entire functions of exponential type

I. F. Krasichkov-Ternovskiia, A. B. Shishkinb

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
b Armavir State Pedagogical Institute

Abstract: Let $\pi_1(z),\dots,\pi_q(z)$ be a system of polynomials of the complex variable $z$. In connection with the problem of spectral synthesis for systems of differential operators $\pi_1(D),\dots,\pi_q(D)$, $D=d/dz$, the problem of the local description of closed submodules is considered for a special module of entire functions over the ring $\mathbb C[\pi_1,\dots,\pi_q]$. It is shown that this problem can be reduced to the local description over the ring $\mathbb C[l]$, where $l$ is the Luroth polynomial associated with the system $\pi_1(z),\dots,\pi_q(z)$.

UDC: 517.5

MSC: 46E10, 30D99

Received: 16.03.2001

DOI: 10.4213/sm608


 English version:
Sbornik: Mathematics, 2001, 192:11, 1621–1638

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026