RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1995 Volume 186, Number 8, Pages 3–24 (Mi sm58)

This article is cited in 7 papers

Exact local estimates for the supports of solutions in problems for non-linear parabolic equations

U. G. Abdullaev

Baku State University

Abstract: The phenomenon of instantaneous shrinking of the support in the Cauchy problem for non-linear parabolic equations with a positive initial function that is infinitesimal as $|x|\to\infty$ is considered. Exact local estimates for the boundary of the support of the solutions are proved. For example, the exact asymptotic formula
$$ u_0\bigl(\eta^\pm(t)\bigr)\sim\bigl[(1-\beta)t\bigr]^{1/(1-\beta)}, \qquad t\to 0, $$
holds for the solution of the equation $u_t=(u^nu_x)_x-u^\beta$, $0<\beta<1$, $n\geqslant 1-\beta$, where $\eta^+(t)=\sup\bigl\{x:u(x,t)>0\bigr\}$ and $\eta^-(t)=\inf\bigl\{x:u(x,t)>0\bigr\}$.

UDC: 517.958

MSC: Primary 35K15, 35K55; Secondary 80A20

Received: 21.01.1994 and 03.10.1994


 English version:
Sbornik: Mathematics, 1995, 186:8, 1085–1106

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026