RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1995 Volume 186, Number 7, Pages 133–146 (Mi sm56)

This article is cited in 1 paper

A criterion for the almost-everywhere convergence of Fourier–Walsh square partial sums of integrable functions

S. F. Lukomskii

Pedagogical Institute of Saratov State University

Abstract: S. V. Konyagin showed that if the one-dimensional Lebesgue constants $L_{n_k}$ for the Walsh–Paley system are unbounded, then the square partial sums $S_{n_k,n_k}(f)$ of some integrable function $f({x})=f(x_1,x_2)$ diverge almost everywhere. On the other hand the author constructed an example of sequence $\{n_k\}$ for which, sup $\sup L_{n_k}$ is finite, but for some integrable function $f({x})=f(x_1,x_2)$ the partial sums $S_{n_k,n_k}(f)$ diverge almost everywhere. Thus boundedness of the Lebesgue constants $L_{n_k}$ is not a necessary and sufficient condition for the convergence almost everywhere of the partial sums $S_{n_k,n_k}(f)$ of any integrable function. In this article we find such a necessary and sufficient condition.

UDC: 517.5

MSC: Primary 42C10; Secondary 42A20

Received: 16.06.1994


 English version:
Sbornik: Mathematics, 1995, 186:7, 1057–1070

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026