RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2001 Volume 192, Number 1, Pages 3–12 (Mi sm533)

This article is cited in 3 papers

A formula for the generalized Sato–Levine invariant

P. M. Akhmet'eva, I. Maleshichb, D. Repovšc

a Steklov Mathematical Institute, Russian Academy of Sciences
b Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation
c University of Ljubljana

Abstract: Let $W$ be the generalized Sato–Levine invariant, that is, the unique Vassiliev invariant of order 3 for two-component links that is equal to zero on double torus links of type $(1,k)$. It is proved that
$$ W=\beta-\frac{k^3-k}6\,, $$
where $\beta$ is the invariant of order 3 proposed by Viro and Polyak in the form of representations of Gauss diagrams and $k$ is the linking number.

UDC: 515.1

MSC: 57M27, 57M25

Received: 03.06.1999 and 23.05.2000

DOI: 10.4213/sm533


 English version:
Sbornik: Mathematics, 2001, 192:1, 1–10

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026