RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2000 Volume 191, Number 12, Pages 27–50 (Mi sm527)

This article is cited in 3 papers

Almost periodic measure-valued functions

L. I. Danilov

Physical-Technical Institute of the Ural Branch of the Russian Academy of Sciences

Abstract: Weakly almost periodic measure-valued functions $\mathbb R\ni t\to\mu[\,\cdot\,;t]$ taking values in the space $\mathscr M(U)$ of Borel measures of variable sign in a complete separable metric space $U$ are considered. A norm ${\|\cdot\|}_w$ introduced in the space $\mathscr M(U)$ defines a metric on the set of probability Borel measures that is equivalent to the Levy–Prokhorov metric. A connection between the almost periodicity of a measure-valued function $t\to\mu[\,\cdot\,;t]\in (\mathscr M(U),{\|\cdot\|}_w)$ and its weak almost periodicity (both in the sense of Bohr and in the sense of Stepanov) is established.

UDC: 517.9

MSC: Primary 42A75; Secondary 28A33

Received: 10.01.1999 and 13.04.2000

DOI: 10.4213/sm527


 English version:
Sbornik: Mathematics, 2000, 191:12, 1773–1796

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026