RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2000 Volume 191, Number 3, Pages 65–98 (Mi sm464)

This article is cited in 36 papers

Asymptotic behaviour of the partition function

V. Yu. Protasov

M. V. Lomonosov Moscow State University

Abstract: Given a pair of positive integers $m$ and $d$ such that $2\leqslant m\leqslant d$, for integer $n\geqslant 0$ the quantity $b_{m,d}(n)$, called the partition function is considered; this by definition is equal to the cardinality of the set
$$ \biggl\{(a_0,a_1,\dots):n=\sum_ka_km^k,\ a_k\in\{0,\dots,d-1\},\ k\geqslant 0\biggr\}. $$
The properties of $b_{m,d}(n)$ and its asymptotic behaviour as $n\to\infty$ are studied. A geometric approach to this problem is put forward. It is shown that
$$ C_1n^{\lambda_1}\leqslant b_{m,d}(n)\leqslant C_2n^{\lambda_2}, $$
for sufficiently large $n$, where $C_1$ and $C_2$ are positive constants depending on $m$ and $d$, and $\lambda_1=\varliminf\limits_{n\to\infty}\dfrac{\log b(n)}{\log n}$ and $\lambda_2=\varlimsup\limits_{n\to\infty}\dfrac{\log b(n)}{\log n}$ are characteristics of the exponential growth of the partition function. For some pair $(m,d)$ the exponents $\lambda_1$ and $\lambda_2$ are calculated as the logarithms of certain algebraic numbers; for other pairs the problem is reduced to finding the joint spectral radius of a suitable collection of finite-dimensional linear operators. Estimates of the growth exponents and the constants $C_1$ and $C_2$ are obtained.

UDC: 511

MSC: Primary 11P81; Secondary 47A13

Received: 23.06.1999

DOI: 10.4213/sm464


 English version:
Sbornik: Mathematics, 2000, 191:3, 381–414

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026