RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2008 Volume 199, Number 11, Pages 141–160 (Mi sm4465)

This article is cited in 6 papers

On the Cauchy problem for the multi-dimensional Cauchy-Riemann operator in the Lebesgue space $L^2$ in a domain

D. P. Fedchenko, A. A. Shlapunov

Institute of Mathematics, Siberian Federal University

Abstract: Let $D$ be a bounded domain in $\mathbb C^n$ ($n\geqslant1$) with infinitely smooth boundary $\partial D$. We describe necessary and sufficient conditions for the solvability of the Cauchy problem in the Lebesgue space $L^2(D)$ in the domain $D$ for the multi-dimensional Cauchy-Riemann operator $\overline\partial$. As an example we consider the situation where the domain $D$ is the part of a spherical shell $\Omega(r,R)=B(R)\setminus\overline B(r)$, $0<r<R<\infty$, in $\mathbb C^n$, where $B(R)$ is the ball of radius $R$ with centre at the origin, cut off by a smooth hypersurface $\Gamma$ with the same orientation as $\partial D$. In this case, using the Laurent expansion for harmonic functions in the shell $\Omega(R,r)$ we construct the Carleman formula for recovering a function in the Lebesgue space $L^2(D)$ from its values on $\overline\Gamma$ and the values of $\overline\partial u$ in the domain $D$, if these values belong to $L^2(\Gamma)$ and $L^2(D)$, respectively.
Bibliography: 16 titles.

UDC: 517.55+517.95

MSC: Primary 32W05; Secondary 31B05, 32A50, 32D15, 32V10, 35H20, 46E35

Received: 05.12.2007 and 17.07.2008

DOI: 10.4213/sm4465


 English version:
Sbornik: Mathematics, 2008, 199:11, 1715–1733

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026