RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1995 Volume 186, Number 5, Pages 127–144 (Mi sm41)

This article is cited in 7 papers

Tartar's method of compensated compactness in averaging the spectrum of a mixed problem for an elliptic equation in a perforated domain with third boundary condition

S. E. Pastukhova


Abstract: We study the problem described in the title of this paper in the domain $\Omega_\varepsilon$ obtained from a domain $\Omega\in\mathbb R^d$ by periodic perforation with period $\varepsilon Q$, where $Q$ is the unit cube in $\mathbb R^d$. For this problem we use the method of compensated compactness to obtain the first two terms of the asymptotics of the $k$-th eigenvalue in powers of $\varepsilon$ as $\varepsilon\to0$: $\lambda_{\varepsilon,k}=\varepsilon^{-1}\Lambda+\lambda_k+\dotsb$, where $\Lambda$ is a constant independent of $k$ and $\lambda_k$ is the $k$-th eigenvalue of the averaged problem (which turns out to be the Dirichlet problem in the domain $\Omega$) for $k\in\mathbb N$.

UDC: 517.946.9

MSC: Primary 35J55; Secondary 35P20

Received: 07.07.1994


 English version:
Sbornik: Mathematics, 1995, 186:5, 753–770

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026