RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1999 Volume 190, Number 3, Pages 89–108 (Mi sm394)

This article is cited in 7 papers

On the successive minima of the extended logarithmic height of algebraic numbers

E. M. Matveev

Moscow State Textile Academy named after A. N. Kosygin

Abstract: Suppose that $\mathbb K\subseteq\mathbb C$ is an algebraic field; $S=2$ if $\mathbb K$ is complex, and $S=1$ if $\mathbb K\subseteq\mathbb R$; $\delta=[\mathbb K:\mathbb Q]/S$. For $\alpha\in\mathbb K^*$ let $H_*(\alpha)=\max\bigl\{\delta h(\alpha),|\ln\alpha|\bigr\}$, where $h(\alpha)$ is the Weil height of the number $\alpha$. Then the inequality
$$ H_*(\alpha_1)\dotsb H_*(\alpha_n)2.5^n(e^{0.2n}n)^S\delta\ln(4.64\delta)>1 $$
holds for multiplicatively independent $\alpha_1,\dots,\alpha_n\in\mathbb K^*$.

UDC: 511

MSC: Primary 11R09, 11H06; Secondary 11J25, 11H31, 11J86

Received: 04.04.1997 and 10.03.1998

DOI: 10.4213/sm394


 English version:
Sbornik: Mathematics, 1999, 190:3, 407–425

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026