RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2008 Volume 199, Number 6, Pages 105–136 (Mi sm3860)

This article is cited in 9 papers

Zeros of the Green's function for the de la Vallée-Poussin problem

Yu. V. Pokornyi

Voronezh State University

Abstract: The Green's function for the de la Vallée-Poussin problem
\begin{gather*} Lx\equiv x^{(n)}+p_1(t)x^{(n-1)}+\dots+p_n(t)x=f, \\ x(a_i)=A_i^{(0)}, \ \ x'(a_i)=A_i^{(1)}, \ \ \dots, \ \ x^{(\nu_i-1)}(a_i)=A_i^{(\nu_i-1)}, \ \ i= {1,\dots,m}, \end{gather*}
where $a=a_1<a_2<\dots<a_m=b$, $m\geqslant2$, $\sum\nu_i=n$, $p_i(\,\cdot\,)$ and $f(\,\cdot\,)\in L_1[a,b]$, is investigated. It is defined in the square $a\leqslant t,s\leqslant b$, and vanishes at the lines $t=a_i$, $i={1,\dots,m}$, $s=a$, $s=b$; it is proved that the orders of its zeros have uniform bounds.
Bibliography: 27 titles.

UDC: 517.927

MSC: 34B27, 34B15

Received: 19.04.2007 and 16.11.2007

DOI: 10.4213/sm3860


 English version:
Sbornik: Mathematics, 2008, 199:6, 891–921

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026