RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2008 Volume 199, Number 4, Pages 21–36 (Mi sm3852)

This article is cited in 4 papers

The test rank of a soluble product of free Abelian groups

Ch. K. Guptaa, E. I. Timoshenkob

a University of Manitoba
b Novosibirsk State University of Architecture and Civil Engineering

Abstract: We consider the variety $\mathbb A^l$ of all soluble groups of derived length at most $l$, $l\geqslant2$. Suppose that a finitely generated group $G$ is a free product in the variety $\mathbb A^l$ of Abelian torsion-free groups. It is proved that the test rank of $G$ is one less than the number of factors. A test set of elements is written out explicitly.
Bibliography: 27 titles.

UDC: 512.54

MSC: Primary 20F16; Secondary 20E10, 20E36

Received: 14.03.2007

DOI: 10.4213/sm3852


 English version:
Sbornik: Mathematics, 2008, 199:4, 495–510

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026