RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2006 Volume 197, Number 11, Pages 13–30 (Mi sm3788)

This article is cited in 28 papers

Self-similar functions in $L_2[0,1]$ and the Sturm–Liouville problem with singular indefinite weight

A. A. Vladimirov, I. A. Sheipak

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The question of the asymptotic behaviour of the spectrum of the boundary value problem
\begin{equation*} -y''-\lambda\rho y=0, \qquad y(0)=y(1)=0, \end{equation*}
is considered, where $\rho$ is a function in $\mathring W_2^{-1}[0,1]$ with arithmetically self-similar primitive function. It is not assumed here that the weight $\rho$ has a constant sign. The theoretical results obtained are illustrated by the data of numerical calculations.
Bibliography: 10 titles.

UDC: 517.984

MSC: Primary 34B25, 47B50; Secondary 47E05

Received: 16.06.2004 and 21.06.2006

DOI: 10.4213/sm3788


 English version:
Sbornik: Mathematics, 2006, 197:11, 1569–1586

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026