RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1974 Volume 95(137), Number 4(12), Pages 475–493 (Mi sm3764)

This article is cited in 10 papers

On convergence conditions for Dirichlet series on closed polygons

V. K. Dzyadyk


Abstract: This paper treats the questions of convergence and summability on a convex polygon $Q$ of the Dirichlet series of a function $f(z)$ which is analytic in $Q$ and continuous on $\overline Q$. Necessary and sufficient conditions for convergence are given for the case of a square; in the general case, if the necessary conditions for convergence are satisfied, it is sufficient that the integral $\int_0^1\frac{\omega(f;t)}t\,dt$ converge.
Bibliography: 7 titles.

UDC: 517.522.6

MSC: Primary 30A16; Secondary 30A82

Received: 18.10.1973


 English version:
Mathematics of the USSR-Sbornik, 1974, 24:4, 463–481

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026