RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1974 Volume 95(137), Number 3(11), Pages 396–417 (Mi sm3760)

This article is cited in 25 papers

Estimates from below of polynomials in the values of analytic functions of a certain class

A. I. Galochkin


Abstract: Estimates from below are obtained for polynomials with integral coefficients in the values of certain Siegel $G$-functions at the algebraic points of a special form. In particular, it is proved that if $\alpha_1,\dots,\alpha_s$ ($\alpha_1\cdots\alpha_s\ne0$) are pairwise distinct algebraic numbers, $q$ is a natural number, and $P(x_1,\dots,x_s)\not\equiv0$ is a polynomial with integral coefficients of degree not greater than $d$ and height not exceeding $H$, then for $q>q_0(d,\alpha_1,\dots,\alpha_s)$ we have
$$\Bigl|P\Bigl(\ln\Bigl(1+\frac{\alpha_1}q\Bigr),\dots,\ln\Bigl(1+\frac{\alpha_s}q\Bigr)\Bigr)\Bigr|>q^{-\lambda}H^{-\mu}, $$
where the constants $q_0$ and $\mu$ can be effectively computed.
Bibliography: 17 titles.

UDC: 511.8

MSC: 33A35, 12A20, 10F25

Received: 17.05.1973


 English version:
Mathematics of the USSR-Sbornik, 1974, 24:3, 385–407

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026