RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1998 Volume 189, Number 12, Pages 73–82 (Mi sm375)

This article is cited in 9 papers

On the Baer ideal in algebras satisfying Capelli identities

K. A. Zubrilin

M. V. Lomonosov Moscow State University

Abstract: The structure is investigated of the Baer ideal of a finitely generated algebra of arbitrary finite signature over an arbitrary field or over a Noetherian commutative-associative ring satisfying a system of Capelli identities of order $n+1$. It is proved that the length of the Baer chain of ideals in such an algebra is at most $n$. It is proved that the quotient of this algebra modulo the largest nilpotent ideal is representable.

UDC: 512

MSC: Primary 16G30, 16N40; Secondary 16D80, 16R20

Received: 20.01.1998

DOI: 10.4213/sm375


 English version:
Sbornik: Mathematics, 1998, 189:12, 1809–1818

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026