RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1974 Volume 95(137), Number 1(9), Pages 53–83 (Mi sm3744)

This article is cited in 2 papers

On free products of restricted Lie algebras

G. P. Kykin


Abstract: The results of A. I. Shirshov (RZh.Mat., 1962, № 8, A215) and the author (RZh.Mat., 1972, № 9, A237, 1973, № 7, A281) on free products of Lie algebras and on free restricted Lie algebras (i.e. Lie $p$-algebras) are carried over to free products of Lie $p$-algebras.
$p$-subalgebras of the free product of Lie $p$-algebras with amalgamated $p$-subalgebra are described in terms of generators and defining relations. It is shown that a $p$-subalgebra $F$ of the free product of Lie $p$-algebras $H_\alpha$ with amalgamated $p$-subalgebra $C$ is free if $F\cap C=0$ and $F\cap H_\alpha$ are free Lie $p$-algebras.
Bibliography: 13 titles.

UDC: 519.48

MSC: 17B50, 17B65, 17B05

Received: 17.12.1973


 English version:
Mathematics of the USSR-Sbornik, 1974, 24:1, 49–78

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026