RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1975 Volume 98(140), Number 2(10), Pages 319–332 (Mi sm3713)

This article is cited in 1 paper

On conditions for the pluriharmonicity of the indicator of a holomorphic function of several variables

P. Z. Agranovich, L. I. Ronkin


Abstract: In this paper we consider holomorphic functions $f(z,w)$ defined in a domain $E_r\times T_\alpha$, where $E_r=\{z:|z|<r\}$ and $T_\alpha=\{w:|\arg w|<\alpha\}$; we obtain necessary and sufficient conditions for the pluriharmonicity of the indicator
$$ h_f(z,w)=\varlimsup_{(z'w')\to(z,w)}\varlimsup_{t\to\infty}\frac{\ln|f(z',tw')|}{t^{\rho(t)}} $$
of $f(z,w)$ in $E_r\times T_\alpha$.
We also obtain necessary and sufficient conditions for the pluriharmonicity of the indicator of a function $f(z)$ holomorphic in a cone.
Bibliography: 6 titles.

UDC: 517.55

MSC: Primary 32A10; Secondary 31C10, 30A70

Received: 10.09.1974


 English version:
Mathematics of the USSR-Sbornik, 1975, 27:2, 289–301

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026