Abstract:
In this paper we consider holomorphic functions $f(z,w)$ defined in a domain $E_r\times T_\alpha$, where $E_r=\{z:|z|<r\}$ and $T_\alpha=\{w:|\arg w|<\alpha\}$; we obtain necessary and sufficient conditions for the pluriharmonicity of the indicator
$$
h_f(z,w)=\varlimsup_{(z'w')\to(z,w)}\varlimsup_{t\to\infty}\frac{\ln|f(z',tw')|}{t^{\rho(t)}}
$$
of $f(z,w)$ in $E_r\times T_\alpha$.
We also obtain necessary and sufficient conditions for the pluriharmonicity of the indicator of a function $f(z)$ holomorphic in a cone.
Bibliography: 6 titles.