RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1975 Volume 98(140), Number 2(10), Pages 268–279 (Mi sm3709)

On rational approximations of functions with a convex derivative

A. Khatamov


Abstract: It is shown that if $p\geqslant1$, and if the function $f(x)$ has a convex $p$th derivative for $x\in[a,b]$, then the least uniform deviation of $f$ from the rational functions of degree no higher than $n$ is bounded from above by the quantity
$$ C(p,\nu)M(b-a)^pn^{-p-2}\overbrace{\ln\dots\ln}^{\nu\,\text{times}}n $$
where $\nu$ is a natural number and $C(p,\nu)$ depends only on $p$ and $\nu$, and where $M=\max|f^{(p)}(x)|$. There is an analogous estimate for $p=0$, provided that $f(x)$ is convex and $f\in{\operatorname{Lip}(\alpha)}$ for some $\alpha>0$.
Bibliography: 10 titles.

UDC: 517.51

MSC: Primary 41A20; Secondary 26A51

Received: 04.02.1975


 English version:
Mathematics of the USSR-Sbornik, 1975, 27:2, 239–250

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026