RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1975 Volume 98(140), Number 1(9), Pages 102–112 (Mi sm3700)

This article is cited in 5 papers

Representation of measurable functions by orthogonal series

N. B. Pogosyan


Abstract: In this paper it is proved that for each bounded orthonormal system $\{\varphi_n(x)\}$ complete in $L^2[0,1]$ there is a series $\sum_{n=1}^\infty a_n\varphi_n(x)$ having the property that for each measurable function $F(x)$ ($F(x)$ can assume infinite values) the terms of the series $\sum_{n=1}^\infty a_n\varphi_n(x)$ can be rearranged so that the resultant series converges almost everywhere to $F(x)$.
Bibliography: 5 titles.

UDC: 517.512

MSC: Primary 42A60, 42A20; Secondary 28A20

Received: 30.12.1974


 English version:
Mathematics of the USSR-Sbornik, 1975, 27:1, 93–102

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026