RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2008 Volume 199, Number 4, Pages 83–106 (Mi sm3697)

This article is cited in 3 papers

A priori estimates, existence and non-existence for quasilinear cooperative elliptic systems

H. Zou

University of Alabama at Birmingham

Abstract: Let $m>1$ be a real number and let $\Omega\subset\mathbb R^n$, $n\geqslant2$, be a connected smooth domain. Consider the system of quasi-linear elliptic differential equations
\begin{align*} \operatorname{div}(|\nabla u|^{m-2}\nabla u)+f(u,v)&=0\quad\text{in } \Omega, \\ \operatorname{div}(|\nabla v|^{m-2}\nabla v)+g(u,v)&=0\quad\text{in } \Omega, \end{align*}
where $u\geqslant0$, $v\geqslant0$, $f$ and $g$ are real functions. Relations between the Liouville non-existence and a priori estimates and existence on bounded domains are studied. Under appropriate conditions, a variety of results on a priori estimates, existence and non-existence of positive solutions have been established.
Bibliography: 11 titles.

UDC: 517.956.2

MSC: Primary 35J55; Secondary 35J65

Received: 25.09.2006 and 17.07.2007

DOI: 10.4213/sm3697


 English version:
Sbornik: Mathematics, 2008, 199:4, 557–578

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026