RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2008 Volume 199, Number 2, Pages 93–114 (Mi sm3685)

This article is cited in 33 papers

Best approximations and widths of classes of periodic functions of several variables

A. S. Romanyuk

Institute of Mathematics, Ukrainian National Academy of Sciences

Abstract: Order estimates are obtained for the best approximations of the Besov classes $B_{p,\theta}^r$ of periodic functions of several variables in the spaces $L_1$ and $L_\infty$ by trigonometric polynomials whose harmonic indices lie in step hyperbolic crosses. The orders of the orthoprojection widths of the classes $B_{p,\theta}^r$ and the linear widths of the classes $B_{p,\theta}^r$ and $W_{p,\alpha}^r$ in the space $L_1$ are found.
Bibliography: 22 titles.

UDC: 517.51

MSC: 41A46, 41A45, 41A50

Received: 12.09.2006 and 19.11.2007

DOI: 10.4213/sm3685


 English version:
Sbornik: Mathematics, 2008, 199:2, 253–275

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026