RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2008 Volume 199, Number 2, Pages 71–92 (Mi sm3663)

This article is cited in 2 papers

On non-trivial additive cocycles on the torus

A. V. Rozhdestvenskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We construct a family of functions $f$ with zero mean on a multidimensional torus possessing a very high degree of smoothness, such that the equation
$$ w(x+\alpha)-w(x)=f(x) $$
has no measurable solutions $w$ for any badly approximable vector $\alpha$. For every vector $\alpha$ admitting an arbitrary prescribed degree of simultaneous Diophantine approximation we construct a cocycle of extremal smoothness that is asymptotically normal in the strong sense.
Bibliography: 19 titles.

UDC: 517.518.4+517.987.5+517.983.5+519.21

MSC: Primary 37A20; Secondary 11K60

Received: 05.09.2006 and 13.09.2007

DOI: 10.4213/sm3663


 English version:
Sbornik: Mathematics, 2008, 199:2, 229–251

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026