RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1975 Volume 97(139), Number 3(7), Pages 403–434 (Mi sm3659)

This article is cited in 5 papers

Analytic continuation with respect to a parameter of the Green's functions of exterior boundary value problems for the two-dimensional Helmholtz equation. I

L. A. Muravei


Abstract: In the first part of the paper one studies the distribution in the half-plane $\{\nu:|{\arg\nu}|<\pi/2\}$ of the roots of the functions $H_\nu'(k)$ and $H_\nu'(k)+igH_\nu(k)$ and of the variable $\nu$ for arbitrary fixed complex $k$ from the region $K(\delta,\varkappa)=\{k:-\delta<\arg k<\pi/2-\delta,\ \varkappa<|k|\}$ for some $\delta\in(0,\pi/2)$ and $\varkappa>0$, where $H_\nu(k)$ is the first Hankel function, $H_\nu'(k)$ is its derivative with respect to $k$, and $g$ is an arbitrary nonnegative number.
Figures: 4.
Bibliography: 10 titles.

UDC: 517.9

MSC: Primary 35J05, 35J25, 33A40; Secondary 30A14

Received: 20.02.1975


 English version:
Mathematics of the USSR-Sbornik, 1975, 26:3, 373–402

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026