RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1975 Volume 97(139), Number 3(7), Pages 360–378 (Mi sm3656)

Properties of Riemann sums for functions representable by a trigonometric series with monotone coefficients

A. Yu. Petrovich


Abstract: We study properties of Riemann sums
$$ R_n(\varphi,a)=\frac{2\pi}n\sum_{k=0}^{n-1}\varphi\biggl(2\pi\frac{k+a}n\biggr),\qquad0\leqslant a\leqslant1, $$
for functions representable as the sum of a trigonometric series with monotone (or convex) coefficients. We consider two basic problems: 1) the connection between the behavior of these sums and the rate of decrease of the coefficients of the series; 2) the limit properties of the ratio of a coefficient of the series, considered as an integral, to a corresponding Riemann sum of higher order.
Bibliography: 4 titles.

UDC: 517.522.3

MSC: Primary 42A32, 42A20; Secondary 26A42, 41A25

Received: 18.11.1974


 English version:
Mathematics of the USSR-Sbornik, 1975, 26:3, 331–347

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026