RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1974 Volume 94(136), Number 1(5), Pages 89–113 (Mi sm3634)

This article is cited in 5 papers

The commutation formula for an $h^{-1}$-pseudodifferential operator with a rapidly oscillating exponential function in the complex phase case

V. V. Kucherenko


Abstract: This paper considers the action of the operator $a\bigl(x_1-ih\frac\partial{\partial x}\bigr)u\overset{\mathrm{def}}=\int a(x,h\xi)\times\exp i(x\xi)\widetilde u(\xi)\,d\xi$ on functions of the form $\exp(\frac{iS}h)\varphi(x)=u(x)$, where $\varphi\in C_0^\infty(\mathbf R^n)$ and $S\in C^\infty(\mathbf R^n)$. In particular, when $ S(x,h)=S(x)$, $\operatorname{im}S(x)\geqslant0$, one has
$$ a\biggl(x_1-ih\frac\partial{\partial x}\biggr)\exp\biggl(-\frac{iS}h\biggr)\varphi=\exp\biggl(\frac{iS}h\biggr)\sum_{j=0}^N h^jL_j\varphi+O(h^{N+1}). $$
It is proved that for $\operatorname{im}S\not\equiv0$ the differential operators $L_j$ can be obtained from the analogous differential operators for $\operatorname{im}S\equiv0$ by means of “almost analytic extension” with respect to the arguments $S',S'',\dots,S^{(k)}$.
Bibliography: 12 titles.

UDC: 517.43

MSC: Primary 35S05, 47G05; Secondary 35J10

Received: 07.06.1973


 English version:
Mathematics of the USSR-Sbornik, 1974, 23:1, 85–109

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026