RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1974 Volume 94(136), Number 1(5), Pages 74–88 (Mi sm3633)

Proof of convergence in the problem of rectification

G. A. Gal'perin


Abstract: The behavior of the vertices $A_1(t),\dots,A_n(t)$ of a polygonal line $\mathbf A(t)$ situated in $k$-dimensional Euclidean space is considered as $t\to\infty$ (each point $A_i(t\pm1)$, $1<i<n$, is a linear combination of the points $A_{i-1}(t)$, $A_i(t)$ and $A_{i+1}(t)$; the points $A_1(t+1)$ and $A_n(t+1)$ are linear combinations of $A_1(t)$ and $A_2(t)$, and $A_{n-1}(t)$ and $A_n(t)$, respectively). It is proved that for any initial position $\mathbf A(0)$ the polygonal lines $\mathbf A(t)$ converge to one of two possible limits, namely a stationary or quasistationary polygonal line.
Figures: 1.
Bibliography: 2 titles.

UDC: 513.7

MSC: 50B30, 92A05

Received: 22.05.1973


 English version:
Mathematics of the USSR-Sbornik, 1974, 23:1, 69–83

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026