RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1969 Volume 80(122), Number 2(10), Pages 253–265 (Mi sm3616)

This article is cited in 7 papers

On a class of nonlinear equations in a space of measurable functions

N. V. Krylov


Abstract: We consider a class of equations in a space of measurable functions that contains a large number of equations involving the value of a game in the theory of optimal control by stochastic processes. We prove the following
Theorem. {\it Let $L$ be a $B$-space of measurable functions, $W\subset L$$B$-space with weakly compact sphere for some norm, $V_0$ a subspace of $W$ that is dense in $L,$ $v_0\in W$ and $V=V_0+v_0$.
Let $L^{\alpha\beta}$ $(\alpha\in\mathfrak U,$ $\beta\in\mathfrak B(\alpha))$ be a family of operators defined on $W$ with positive resolvents $R_\lambda^{\alpha\beta}$ $(R_\lambda^{\alpha\beta}f\in V_0$ for $f\in L),$ and let $f^{\alpha\beta}$ $(\alpha\in\mathfrak U,$ $\beta\in\mathfrak B(\alpha))$ be a family of functions such that $|f^{\alpha\beta}|\leqslant g\in L$ for all $\alpha$ and $\beta$.
Then $($under certain additional assumptions on $L,$ $W,$ $L^{\alpha\beta},$ $R_\lambda^{\alpha\beta})$ the equation $\lambda u-\inf_{\alpha\in\mathfrak U}\sup_{\beta\in\mathfrak B(\alpha)}(L^{\alpha\beta}u+f^{\alpha\beta})=f $ has a unique solution in $V$ for $\lambda\geqslant0$, $f\in L$. This solution has the form}
$$ u=\inf_{\alpha\in\mathfrak U}\sup_{\beta\in\mathfrak B(\alpha)}R_\lambda^{\alpha\beta}(f^{\alpha\beta}+f+\lambda v_0-L^{\alpha\beta}v_0)+v_0. $$

Bibliography: 6 titles.

UDC: 517.51+513.881

MSC: 46E30, 49J20, 60Gxx, 47Axx

Received: 30.10.1968


 English version:
Mathematics of the USSR-Sbornik, 1969, 9:2, 241–251

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026