RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1998 Volume 189, Number 11, Pages 121–138 (Mi sm361)

This article is cited in 13 papers

Harmonic measure of radial line segments and symmetrization

A. Yu. Solynin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: Let $l_k=\{z:\operatorname {arg}z=\alpha _k,\ r_1\leqslant |z|\leqslant r_2\}$ for $k=1,\dots,n$, $0<r_1<r_2\leqslant 1$, and $\alpha _k\in \mathbb R$; let $E=\bigcup _{k=1}^nl_k$, let $E^*=\{z:\operatorname {arg}z^n=0,\ r_1\leqslant |z|\leqslant r_2\}$; and let $\omega _E(z)$ be the harmonic measure of $E$ with respect to the domain $\{z:|z|<1\}\setminus E$. The inequality $\omega _E(0)\leqslant \omega _{E^*}(0)$ is established, which solves the problem of Gonchar on the harmonic measure of radial slits. The proof uses the dissymmetrization method of Dubinin and the method of the extremal metric in the form of the problem of extremal partitioning into non-overlapping domains.

UDC: 517.54

MSC: Primary 31A15, 30C85; Secondary 30F15

Received: 18.11.1997

DOI: 10.4213/sm361


 English version:
Sbornik: Mathematics, 1998, 189:11, 1701–1718

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026