RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1969 Volume 79(121), Number 4(8), Pages 477–516 (Mi sm3600)

This article is cited in 6 papers

Asymptotic methods in the theory of ordinary linear differential equations

M. V. Fedoryuk


Abstract: In this paper we consider systems of the form
\begin{equation} y'=\mu A(x)y \end{equation}
on the semiaxis $x\geqslant0$, where $y(x)$ is a column vector with $n$ components, $A(x)$ is an ($n\times n$)-matrix, and $\mu$ is a parameter. We pose the problem of finding the asymptotic behavior of the solutions of equation (1) as $x\to\infty$ and $\mu\to\infty$.
Bibliography: 16 titles.

UDC: 517.941

MSC: 34E05, 34K06, 34L20

Received: 26.12.1968


 English version:
Mathematics of the USSR-Sbornik, 1969, 8:4, 451–491

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026