RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1970 Volume 83(125), Number 4(12), Pages 616–638 (Mi sm3532)

This article is cited in 3 papers

Estimates of the curvature of a three-dimensional evolute

Yu. A. Volkov, B. V. Dekster


Abstract: The article discusses compact three-dimensional evolutes of positive curvature and convex boundary and establishes inequalities that connect their integral characteristics: volume $V$, boundary area $S$, mean integral curvature of the boundary $H$, radius of the inscribed sphere $r$, and inner integral curvature $\Omega$. The last characteristic is a measure of non-Euclidicity of an evolute involved: $\Omega=0$ if and only if the evolute is locally Euclidean. The inequalities obtained in particular imply that $2\pi\chi r\leqslant H+\Omega$, where $\chi$ is the Euler characteristic of the evolute boundary.
For an evolute homeomorphic to a sphere we have $\chi=2$, so that $r\leqslant\frac{H+\Omega}{4\pi}$, $V\leqslant Sr\leqslant\frac{H+\Omega}{4\pi}$. Equality in the estimate $r\leqslant\frac{H+\Omega}{4\pi}$ is achieved for a Euclidean sphere: for it $\Omega=0$ and $r=\frac H{4\pi}$.
Figures: 6.
Bibliography: 2 titles.

UDC: 513.7

MSC: 53C22, 52A40, 52A41, 32Q10

Received: 26.05.1970


 English version:
Mathematics of the USSR-Sbornik, 1970, 12:4, 615–637

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026