RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1974 Volume 93(135), Number 4, Pages 588–595 (Mi sm3484)

This article is cited in 11 papers

On projective modules over polynomial rings

A. A. Suslin


Abstract: We prove that every projective module of rank greater than $\frac{n+1}2$ over the ring $k[X_1,\dots,X_n]$ is free if $k$ is an infinite field.
Bibliography: 5 titles.

UDC: 513.015.7

MSC: Primary 13C10; Secondary 14F05, 18F25

Received: 04.06.1973


 English version:
Mathematics of the USSR-Sbornik, 1974, 22:4, 595–602

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026