RUS
ENG
Full version
JOURNALS
// Matematicheskii Sbornik
// Archive
Mat. Sb. (N.S.),
1974
Volume 93(135),
Number 4,
Pages
588–595
(Mi sm3484)
This article is cited in
11
papers
On projective modules over polynomial rings
A. A. Suslin
Abstract:
We prove that every projective module of rank greater than
$\frac{n+1}2$
over the ring
$k[X_1,\dots,X_n]$
is free if
$k$
is an infinite field.
Bibliography: 5 titles.
UDC:
513.015.7
MSC:
Primary
13C10
; Secondary
14F05
,
18F25
Received:
04.06.1973
Fulltext:
PDF file (829 kB)
References
Cited by
English version:
Mathematics of the USSR-Sbornik, 1974,
22
:4,
595–602
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2026