RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1975 Volume 97(139), Number 1(5), Pages 35–58 (Mi sm3480)

This article is cited in 29 papers

Integral equations on the half-line with difference kernels and nonlinear functional equatons

N. B. Engibaryan, A. A. Arutyunyan


Abstract: In this paper we present a new approach to the solution of scalar and operator equations of the form
\begin{equation*} f(x)=g(x)+\int_0^\infty T(x-t)f(t)\,dt. \tag{A} \end{equation*}

We derive and study some new functional equations, occupying an intermediate position between the equation (A) and the Ambarcumyan equation. This approach leads to a very simple way of deriving and generalizing Ambarcumyan's equations.
Bibliography: 18 titles.

UDC: 517.948

MSC: Primary 45E10; Secondary 47G05

Received: 05.03.1974


 English version:
Mathematics of the USSR-Sbornik, 1975, 26:1, 31–54

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026