RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1970 Volume 82(124), Number 1(5), Pages 99–110 (Mi sm3438)

This article is cited in 6 papers

Bounded inhomogeneous nonlinear elliptic and parabolic equations in the plane

N. V. Krylov


Abstract: A study is made of equations of the form $F\bigl(x,D_{ij}u-d\delta_{ij}\frac{\partial u}{\partial t},D_iu,u\bigr)=0$ in a bounded smooth domain in the plane $(d=0)$ or in a smooth cylinder above the plane $(d=1)$ with Dirichlet data on the boundary, and also of the problem with a free boundary for these equations. It is proved that if the function $tF\bigl(x,\frac\xi t\bigr)$ satisfies an ellipticity condition with respect to $\xi_{ij}$, a boundedness condition for the “coefficients” of $\xi$ and $t$ and a negative condition for the “coefficient” of $u$, then all the problems have a solution in the corresponding Sobolev–Slobodetskii space which is unique.
Bibliography: 6 titles.

UDC: 517.946

MSC: 35K35, 35K60, 35J40, 35J65, 35K55, 46E35

Received: 20.06.1969


 English version:
Mathematics of the USSR-Sbornik, 1970, 11:1, 89–99

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026