RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1974 Volume 93(135), Number 3, Pages 368–380 (Mi sm3419)

This article is cited in 15 papers

Simple algebras with involution, and unitary groups

V. I. Yanchevskii


Abstract: Let $A$ be a central simple algebra on which an involutory antiautomorphism $S$ is given whose restriction to the center $K$ of $A$ is not the identity. Let $\Sigma(A^*)$ be the subgroup of the multiplicative group $A^*$ of $A$ generated by the elements $x\in A^*$ such that $x^S=x$, let $Nrd_{A/K}\colon A\to K$ be the reduced norm mapping of $A$ into $K$, and let $\Sigma'(A^*)$ be the subgroup of $A^*$ generated by the elements $x\in A^*$ whose reduced norm is invariant with respect to $S$. This paper considers the problem of when the groups $\Sigma'(A^*)$ and $\Sigma(A^*)$ coincide.
Bibliography: 15 titles.

UDC: 519.48

MSC: 16A46, 16A40, 16A28, 20G15

Received: 06.02.1973


 English version:
Mathematics of the USSR-Sbornik, 1974, 22:3, 372–385

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026