RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1975 Volume 96(138), Number 4, Pages 584–593 (Mi sm3410)

This article is cited in 7 papers

On the connection of the eigenvalues of Hecke operators and the Fourier coefficients of eigenfunctions for Siegel's modular forms of genus $n$

N. A. Zharkovskaya


Abstract: Let $f(z)=\sum_{N\geqslant0}a(N)\exp2\pi i\sigma(NZ)$ be Siegel's modular form of genus $n$ which is an eigenfunction for all operators in the $p$-component of a Hecke ring; in particular, $T_{p^\delta}f(Z)=\lambda_f(p^\delta)f(Z)$. This paper examines the series $\sum_{\delta=0}^\infty a(p^\delta N)t^\delta$ ($p$ does not divide $N$). It is proved that each such series is a rational function, where the degree of the numerator of this function does not exceed $2^n-2$ and the denominator coincides with the denominator of the series $\sum_{\delta=0}^\infty \lambda_f(p^\delta)t^\delta$.
Bibliography: 6 titles.

UDC: 517.863

MSC: 10D20, 42A16

Received: 15.07.1974


 English version:
Mathematics of the USSR-Sbornik, 1975, 25:4, 549–557

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026