RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1970 Volume 81(123), Number 3, Pages 358–375 (Mi sm3378)

This article is cited in 29 papers

Representations of pseudo-orthogonal groups associated with a cone

V. F. Molchanov


Abstract: We study representations of the group $SO_0(p,q)$, $p>1$, $q>1$, in the spaces $D_\chi$, $\chi=(\sigma,\varepsilon)$ ($\sigma$ is a complex number; $\varepsilon=0$ or 1), of $C^\infty$-functions $\varphi(x)$ on the cone $-x_1^2-\dots-x_p^2+x_{p+1}^2+\dots+x_{p+q}^2=0$, $x\ne0$, of homogeneous degree $\sigma$ and parity $\varepsilon$: $\varphi(tx)=|t|^\sigma{\operatorname{sign}}^\varepsilon t\cdot\varphi(x)$. We consider the structure of the invariant subspaces, irreducibility, the operators which commute with the group (the intertwining operators), invariant Hermitian forms, and unitarity.
Figures: 1.
Bibliography: 12 titles.

UDC: 512.864

MSC: 20Cxx, 47A15, 47A80, 22F05, 47B15

Received: 18.03.1969


 English version:
Mathematics of the USSR-Sbornik, 1970, 10:3, 333–347

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026