RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1970 Volume 81(123), Number 2, Pages 176–184 (Mi sm3368)

This article is cited in 4 papers

Invariant algebras on compact groups

A. L. Rozenberg


Abstract: The main result is a description of homogeneous (i.e. invariant relative to left and right shifts) algebras with uniform convergence on a compact group. As a corollary we obtain a generalization of a theorem of Rider: let the real annihilater $A^\perp$ of a homogeneous antisymmetric algebra $A$ be separable in the topology of the definite norm in the conjugate space. Then the connected component of the identity $G_0$ of the group $G$ is commutative and $\dim A^\perp\geq{\operatorname{card}}(G/G_0)$. Rider proved that if $A^\perp=\{0\}$, then $G$ is commutative and connected.
Bibliography: 3 titles.

UDC: 519.46

MSC: 22C05, 22E46, 22E45, 22D15

Received: 26.08.1968


 English version:
Mathematics of the USSR-Sbornik, 1970, 10:2, 165–172

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026