RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1970 Volume 81(123), Number 1, Pages 3–22 (Mi sm3357)

This article is cited in 11 papers

On equations of minimax type in the theory of elliptic and parabolic equations in the plane

N. V. Krylov


Abstract: The existence and uniqueness of the solution in Sobolev spaces $W_p^2$ ($W_p^{2,1}$) is proved for the first boundary value problem for elliptic (parabolic) equations of the form
$$ \lambda u-\inf_{\alpha\in\mathfrak U}\sup_{\beta\in\mathfrak B(\alpha)}(L_{\alpha\beta}u+f_{\alpha\beta})=f. $$

Here $L_{\alpha\beta}u=a_{ij}^{\alpha\beta}D_{ij}u+b_i^{\alpha\beta}u_{x_i}-c^{\alpha\beta}u$ and $D_{ij}u=u_{x_ix_j}$ in the elliptic case, $D_{ij}u=u_{x_ix_j}-\delta_{ij}u_t$ in the parabolic case. The subscript $p$ takes any values close to two.
Bibliography: 10 titles.

UDC: 517.944/947

MSC: 35A05, 35J25, 35J20, 46E35

Received: 08.12.1968


 English version:
Mathematics of the USSR-Sbornik, 1970, 10:1, 1–19

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026