Abstract:
The following is proved in the article.
Theorem. {\it If a sequence of interpolation points satisfies the conditions $|\arg z_n|\leqslant\frac\pi2\left(1-\frac1\rho\right)$ for all sufficiently large $n$ and $\varlimsup_{n\to\infty}n^{-1/\rho}|z_n|=\varlimsup_{n\to\infty}n^{-1/\rho}S_n=1,$ where $S_n=\sum_{\nu=0}^{n-1}|z_\nu-z_{\nu+1}|,$ for $1\leqslant\rho<\infty,$ and $\arg z_n=0,$$z_n\leqslant z_{n+1}$$(n=0,1,\dots),$$\lim_{n\to\infty}n^{-1/\rho}z_n=1$ for $0<\rho<1,$ then the assertions}
1) $\varlimsup_{n\to\infty}\{n^{-n/\rho}n!\max_{|z|\leqslant r}|P_n(z)|\}^{1/n}\equiv1$ for $1\leqslant\rho<\infty$,
2) $\frac1\rho\exp\left(1-\frac1\rho\right)\leqslant\varlimsup_{n\to\infty}\{n^{-n/\rho}n!\max_{|z|\leqslant r}|P_n(z)|\}^{1/n}\leqslant1$ for$0<\rho<1$ \noindentare valid for any $r<\infty$. Here $P_n(z)$ is the Goncharov polynomial of degree $n$. Bibliography: 3 titles.