RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1973 Volume 91(133), Number 4(8), Pages 580–626 (Mi sm3328)

This article is cited in 5 papers

Uniqueness theorems for analytic functions asymptotically representable by Dirichlet–Taylor series

M. M. Dzhrbashyan


Abstract: Dirichlet–Taylor series
$$ \sum^\infty_{j=1}d_je^{-\lambda_j s}s^{s_j-1} $$
are considered, where $\{d_j\}^\infty_1$ is a sequence of complex numbers, $\{\lambda_j\}^\infty_1$ is a nondecreasing sequence of positive numbers, and $s_j\geqslant1$ ($j\geqslant1$) is the number of times $\lambda_j$ occurs in the segment $\{\lambda_1,\dots,\lambda_j\}$.
An “adherence principle” is established for these series. As applications of this principle, uniqueness theorems are proved for analytic functions which are asymptotically representable by partial sums of Dirichlet–Taylor series in strips.
Bibliography: 16 titles.

UDC: 517.522.6

MSC: Primary 30A16, 30A84; Secondary 30A64, 30A86, 40G10, 30A80, 47G05, 30A04

Received: 01.03.1973


 English version:
Mathematics of the USSR-Sbornik, 1973, 20:4, 603–649

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026