RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1973 Volume 91(133), Number 4(8), Pages 500–522 (Mi sm3313)

This article is cited in 5 papers

Asymptotics of the fundamental solution of a Petrovskii parabolic equation with constant coefficients

S. G. Gindikin, M. V. Fedoryuk


Abstract: Let $P(\zeta)$, $\zeta\in\mathbf C^n$, be a homogeneous, parabolic polynomial of degree $2m$. Properties of the function
$$ \nu(\eta)=\min_{\xi\in\mathbf R^n}\operatorname{Re}P(\xi+i\eta),\qquad\eta\in\mathbf R^n, $$
are investigated. Two-sided estimates are obtained for the fundamental solution $G(t,x)$ of the equation
$$ \frac{\partial u}{\partial t}+P\biggl(\frac1i\frac\partial{\partial x}\biggr)u=0, $$
and an asymptotic decomposition is determined for $G(t,x)$ as $|x|^{2m}/t\to+\infty$ under the assumption that $\nu(\eta)\in C^1(\mathbf R^n)$.
Bibliography: 14 titles.

UDC: 517.947

MSC: 35K30, 35B40, 35E05

Received: 09.11.1972


 English version:
Mathematics of the USSR-Sbornik, 1973, 20:4, 519–542

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026