RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1973 Volume 91(133), Number 3(7), Pages 402–420 (Mi sm3304)

This article is cited in 4 papers

Unramified algebraic extensions of commutative Banach algebras

Yu. V. Zyuzin, V. Ya. Lin


Abstract: Extensions of a commutative Banach algebra $A$ by means of roots of polynomials over $A$ with invertible discriminant are investigated. In the case when $A$ has no nontrivial idempotent, for each such polynomial $f$ a Banach algebra $A_f$, which plays the role of a minimal splitting algebra, is constructed. Unramified radical extensions of $A$ are defined, and the question of the solvability of algebraic equations over $A$ in unramified radicals is investigated.
Bibliography: 12 titles.

UDC: 519.56

MSC: Primary 46J05, 13B05; Secondary 13B25

Received: 31.10.1972


 English version:
Mathematics of the USSR-Sbornik, 1973, 20:3, 419–437

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026