RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1973 Volume 91(133), Number 3(7), Pages 367–389 (Mi sm3301)

On a class of globally hypoelliptic operators

A. V. Fursikov


Abstract: We consider an operator $A$ which is defined on an $(n+1)$-dimensional manifold $\Omega$ and which is elliptic everywhere outside an $n$-dimensional submanifold $\Gamma$. If $(x)$ represents the local coordinates in $\Gamma$ and $t$ is the distance to $\Gamma$, then in the coordinates $(x,t)$ the operator $A$ is of the form
$$ Au=\sum_{|\beta|+l\leqslant m}a_{\beta l}(x,t)t^{lq}D^\beta_xD^l_tu, $$
where $q>1$ is an integer. We present a necessary and sufficient condition for infinite differentiability in a neighborhood of $\Gamma$ of the solution of $Au=f$ if $f$ is infinitely differentiable in a neighborhood of $\Gamma$.
Bibliography: 16 titles.

UDC: 517.944

MSC: Primary 58G99, 35B99, 35H05; Secondary 58G15

Received: 29.06.1972


 English version:
Mathematics of the USSR-Sbornik, 1973, 20:3, 383–405

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026