RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1971 Volume 86(128), Number 2(10), Pages 325–334 (Mi sm3298)

This article is cited in 2 papers

An energy condition for the existence of a rotation

Yu. A. Aminov


Abstract: In this paper the following assertion is proved. Let the regular vector field $\mathbf u=(u^1,u^2,u^3)$ be defined in a cube in the space $E^3$. If the sum of the principal minors of the matrix $\|\partial u^i/\partial x_j\|$ is majorized by the quantity $c^2\bigl(|1|+|\mathbf u|^2\bigr)^2$ and, moreover, $|\operatorname{rot}\mathbf u|\leqslant\mu$, then the length $a$ of the side of the square is bounded above: $a\leqslant a_0(\mu,c)$. As an application there is an interpretation of the results in terms of the mechanics of elastic media. Thus, it is established that if a deformable body contains a sufficiently large cube and if a large part of the energy does not involve the spatial divergence, then there exists a nonzero rotational force field.
Bibliography: 8 titles.

UDC: 516.8

MSC: Primary 53A05, 53A45, 53C99; Secondary 57D25

Received: 27.07.1970


 English version:
Mathematics of the USSR-Sbornik, 1971, 15:2, 325–334

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026