RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1971 Volume 86(128), Number 1(9), Pages 76–89 (Mi sm3289)

This article is cited in 1 paper

On the asymptotic distribution of the eigenvalues of degenerating elliptic equations of second order

V. N. Tulovskii


Abstract: Let $P$ be a differential operator of the form
$$ P=-\sum_{i,j=1}^n\frac\partial{\partial x_i}\biggl(a_{ij}(x)\varphi(x)\frac\partial{\partial x_j}\biggr)+a_0(x) $$
in the domain $G\subseteq\mathbf R^n$ which has smooth boundary.
The asymptotic distribution of the eigenvalues of this operator is studied in this paper. Under certain conditions on $\varphi(x)$ and $a_{ij}(x)$, lower and upper estimates for the number of eigenvalues of $P$ are obtained.
Bibliography: 2 titles.

UDC: 517.946+517.948.35

MSC: 35P20

Received: 06.10.1970


 English version:
Mathematics of the USSR-Sbornik, 1971, 15:1, 75–87

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026