RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1998 Volume 189, Number 5, Pages 115–128 (Mi sm327)

This article is cited in 5 papers

The Gauss-Ostrogradskii formula in infinite-dimensional space

O. V. Pugachev

M. V. Lomonosov Moscow State University

Abstract: The aim of the present paper is to generalize the Gauss–Ostrogradskii theorem to an infinite-dimensional space $X$. On this space we consider not only Gaussian measures but a wider class of measures, differentiable along some Hilbert space continuously embedded in $X$. In the paper, a construction of a surface measure which employs ideas of the Malliavin calculus and the theory of Sobolev capacities is considered. It is a generalisation of the surface integration developed by Malliavin for the Wiener measure.

UDC: 519.21

MSC: 26B20, 28C20, 28A15, 60H07, 60B11, 46E35

Received: 08.12.1997

DOI: 10.4213/sm327


 English version:
Sbornik: Mathematics, 1998, 189:5, 757–770

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026