RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1971 Volume 85(127), Number 4(8), Pages 459–473 (Mi sm3266)

This article is cited in 4 papers

On uniqueness classes for degenerating parabolic equations

I. M. Sonin


Abstract: We study the uniqueness classes of a generalized solution of the Cauchy problem
\begin{equation} u_t=\frac12\sum_{i,j=1}^na_{ij}(x)u_{x_ix_j}+\sum_{i=1}^na_i(x)u_{x_i}\equiv Lu,\quad u(0,x)=\varphi(x),\quad x\in\mathbf R^n,\ t\in[0,T], \end{equation}
when the matrix $\bigl\{a_{ij}(x)\bigr\}$ is degenerate. A generalized solution is introduced with the help of an infinitesimal operator of a Markov process connected with the operator in (1). In the proof of the theorems we use probabilistic characteristics of this process.
Bibliography: 11 titles.

UDC: 517.946+519.21

MSC: Primary 35D05, 35K15, 60H99, 60J90; Secondary 35B05, 35K05

Received: 26.12.1969


 English version:
Mathematics of the USSR-Sbornik, 1971, 14:4, 453–469

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026