RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1998 Volume 189, Number 6, Pages 59–84 (Mi sm324)

This article is cited in 10 papers

Growth of entire and meromorphic functions

I. I. Marchenko

V. N. Karazin Kharkiv National University

Abstract: The influence of the number of 'separated' maximum modulus points of a meromorphic function $f(z)$ on the circle $\{z:|z|=r\}$ on the quantity
$$ b(\infty ,f)=\liminf _{r\to \infty }\log ^+ \max _{|z|=r}\frac {|f(z)|}{rT'_-(r,f)}\,, $$
is investigated, where $T'_-(r,f)$ is the left-hand derivative of the Nevanlinna characteristic. Sharp estimates of the corresponding values are obtained. Sharp estimates of the quantities $b(a,f)$ and $\sum _{a\in \mathbb C}b(a,f)$ in terms of the Valiron deficiency $\Delta (a,f)$ and the Valiron deficiency $\Delta (0,f')$ of zero for the derivative, respectively, are also obtained.

UDC: 517.56

MSC: Primary 30D35; Secondary 30D30, 30D20

Received: 17.02.1997

DOI: 10.4213/sm324


 English version:
Sbornik: Mathematics, 1998, 189:6, 875–899

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026