RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1972 Volume 89(131), Number 3(11), Pages 355–365 (Mi sm3238)

This article is cited in 7 papers

On the convergence of series of weakly multiplicative systems of functions

V. F. Gaposhkin


Abstract: A system of measurable functions $\{\varphi_k\}$ defined on a measurable space is called weakly multiplicative if it satisfies the relations
$$ \int_X\varphi_{k_1}\varphi_{k_2}\dots\varphi_{k_p}\,d\mu=0\quad(\forall p\geqslant2,\ k_1<k_2<\dots<k_p). $$

In this paper the convergence in the metric of $L_p$ and a.e. is investigated for series of weakly multiplicative system of functions. One of the results is: {\it If $\{\varphi_k\}$ is weakly multiplicative and $\sup_k\|\varphi_k\|_p\leqslant M$ for some $p>2,$ then any series $\sum c_k\varphi_k$ with coefficients in $l_2$ converges unconditionally a.e. and in $L_p$}. For $p=2n$, instead of weak multiplicativity it is sufficient to require the condition $\int_X\varphi_{k_1}\dots\varphi_{k_{2n}}\,d\mu=0$ ($\forall k_1<\dots<k_{2n}$).
Bibliography: 13 titles.

UDC: 517.522

MSC: Primary 42A60; Secondary 60G45, 60G50

Received: 25.10.1971


 English version:
Mathematics of the USSR-Sbornik, 1972, 18:3, 361–372

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026