RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1972 Volume 89(131), Number 2(10), Pages 280–296 (Mi sm3232)

This article is cited in 41 papers

Groups of conformal transformations of Riemannian spaces

D. V. Alekseevskii


Abstract: It is proved that if a Riemannian space $(M,g)$ of class $C^\infty$ has a connected group of conformal transformations which leaves no conformally given metric $e^\sigma_g$ invariant, then $(M,g)$ is globally conformal to a sphere $(S^n,g_0)$ or to Euclidean space $(E^n,g_0)$.
Bibliography: 12 titles.

UDC: 513.766

MSC: Primary 57E30; Secondary 53C10, 53A30

Received: 13.09.1971


 English version:
Mathematics of the USSR-Sbornik, 1972, 18:2, 285–301

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026